
1 Variational Tools for Signal Similarity Analysis

Authors: Selim Esedoglu and Kevin Vixie.
Affiliation:
Esedoglu: Department of Mathematics, University of Michigan
Vixie: Los Alamos National Laboratory.
Contact Information:
Esedoglu: University of Michigan
Department of Mathematics
2074 East Hall
530 Church St.
Ann Arbor, MI 48109
Phone: (734)-936-9936
email: esedoglu@umich.edu

Vixie: Mathematical Modeling and Analysis, T-7
Mail Stop, B284
Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM 87545
Phone: (505)-665-9887 email: vixie@lanl.gov

Description

This collection of eight routines, and their associated subroutines, implement a number of metrics for
quantifying the differences between signals from experiments and simulations.

Our approach has been informed by the intuitive process by which experts judge the similarity
and differences between two given signals (typically, one signal from experiments, and the other from
simulation).

An important criterion that experts have been observed to judge the signal similarity by is closeness
of the envelopes of the two signals. This has motivated us to develop a mathematical, multi-scale notion
of the envelope of a given time series signal, using an approach based on the calculus of variations.
Our models allow the user to specify how tightly (i.e. at how fine a scale) the envelope should follow
the underlying signal, as well as how hard the constraint of being an envelope (i.e. always remaining
above or below the graph) is to be enforced.

Furthermore, the expert opinion seems to suggest that if two signals are slightly out of phase (even if
in a non-uniform way), they may be still considered to be in excellent agreement if their overall energy
and peaks and nadirs are in close correspondence. In order to compare signals modulo such apparently
insignificant variations in phase, we developed an algorithm that can locally stretch or compress (i.e.
deform) one signal to match as closely as possible the other. Naturally, a penalty is imposed on the
extent of the deformation required for the match, which then serves to quantify the similarity.

Another important way to suppress insignificant signal details is through the classical technique
known as Tikhonov regularization. In this variational approach, a smoother form of the signal is
obtained by attenuating higher frequencies. This way, larger scale features of the signals can be
exposed and compared, instead of getting lost in the much finer and unreliable attributes. We have
implemented Tikhonov regularization as well, and make use of it in connection with the other tools
developed as mentioned above.

A more specific description of the individual routines follows:

tik = tik_f(fin,lambda):

This routine computes the Tikhonov regularized version of the input signal fin. The regularized
signal is returned as output. The parameter lambda determines the scale at which the input signal is
regularized: The larger the parameter, the less regularized (and hence finer) the output signal. As the
parameter lambda is decreased, the regularized signal is allowed to deviate more and more from the
given one for the sake of increased regularity.

1

[enu,enl] = env_ev(nsteps,dt,in_enu,in_enl,fin,lambda,mu)

Given an input signal represented by fin, this routine computes an upper envelope function, denoted
enu, and a lower envelope function, denoted enl, that encapsulate the graph of fin. It implements a
variational model for finding these envelope functions, and solves the nonlinear optimization problem
involved iteratively, using a number of time steps specified by nsteps. The user can set the scale (i.e.
the detail level, or how closely the envelope functions follow ups and downs of fin) by tuning the
parameter lambda. The user can also set how strictly the two “constraints” enu≥fin and enl≤fin
are to be enforced by tuning the parameter mu.

[u,E] = match(nt,dt,uin,f,g,fid)

This routine is used for warping a one dimensional signal f onto another given by g, so that the two
match as well as possible while minimizing a warping energy. It is based on a variational model that
involves minimizing a cost function iteratively. Therefore, the routine requires the number of iterations
nt to take and the step size dt used in each iteration, as well as an initial guess uin for the deformation,
to be specified. Moreover, the user is able to tune how aggressive the deformation should take place
by tuning the parameter fid. The routine returns not only the optimal warping function u found, but
also its corresponding optimal cost E.

y = fint1d(x,f)

This routine carries out linear interpolation in one dimension. The input function f is assumed to be
defined on a uniform grid on the unit interval [0, 1]; the first grid point is assumed to be at 0, and the
last one at 1. The input vector x contains the coordinates of points at which f is to be interpolated.

d = warp_dist(nt,dt,f,g,fid)

This routine calls on match.m twice in order to compute a qualitative measure of difference between
the two input signals f and g up to deformations of one onto the other (so as to compensate for small
phase differences and the like). First, f is warped onto g, and the corresponding cost recorded, and
then g is mapped onto f. The value d returned by the routine is the sum of the two deformations
costs.

[env_measures] = env_meas(e)

This routine takes as its input the upper and lower envelope of a one dimensional signal and computes
several measures from them that characterize certain aspects of the signal. Considering the envelope
as the region between the graphs of the upper and lower envelope functions, it computes:

1. The vertical centroid of the envelope region,

2. The widest gap between the upper and lower envelopes,

3. Location where the maximum gap between upper and lower envelopes occurs,

4. The vertical width of the envelope,

5. Location where the upper envelope is largest,

6. Location where the lower envelope is smallest,

7. Maximum of the upper envelope,

8. Minimum of the lower envelope,

9. Area of the envelope region (i.e. area between the graphs of the upper and lower envelope
functions).

[symdiff] = env_symdiff(e1,e2)

2

This routine is used to compare how close the envelops obtained from two different one dimensional
signals are. The envelope of a function is thought of as the region between the its upper and lower
envelope functions (which can be obtained from the routine env_ev.m). This routine compares the
envelopes by finding the area of symmetric difference (i.e. the set of points defined as being contained
in only one of) the two regions. This measure is then non-dimensionalized by dividing it by the sum
of the areas of the two regions.

Mathematical Principles

tik = tik_f(fin,lambda):

Tikhonov regularization is a classical variational model for smoothing a given signal f(x). It exhibits
the regularized version of f(x) as the solution of the following optimization problem:

min
u

∫
|∇u|2 + λ

(
u(x)− f(x)

)2
dx

This is a strictly convex variational problem with a unique minimizer. Furthermore, the Euler-Lagrange
equation (i.e. the optimality condition) satisfied by the minimizer is the following linear PDE:

∆u + 2λ
(
u− f

)
= 0.

This simple, linear elliptic PDE can be easily solved numerically; the routine tikf .m utilizes the three
point formula to approximate the Laplacian operator on the uniform grid:

∆u(xj) ≈
u(xj+1)− 2u(xj) + u(xj−1)

h2

where h stands for the uniform grid size (the domain of the signal is assumed to be [0, 1]). The discrete
form of the PDE is therefore

uj+1 − 2uj + uj−1

h2
+ 2λ(fj − uj) = 0.

The resulting linear system of equations is then solved very efficiently using the discrete Fourier trans-
form. This is accomplished as follows: In the frequency domain, the three point formula for the
Laplacian becomes the multiplication operator:

ûj → (wj−1 − 2 + w1−j)ûj

which is very easy to invert in this basis, since it is diagonalized. Here, w denotes the n-th root of
unity exp(2πi/n), where n is the length of the input signal. The discretized PDE becomes:(

w1−j − 2 + wj−1 − 2λh2
)
ûj = −2h2λf̂j .

After solving for ûj above, an inverse DFT produces the desired result.

[enu,enl] = env_ev(nsteps,dt,in_enu,in_enl,fin,lambda,mu)

We propose a mathematical notion for the “envelope” of a given function f(x), using a variational
formulation. Any reasonable definition of envelope must necessarily allow for “scale selection”; in
other words, it should come with a parameter that determines how closely the envelope should follow
oscillations in the graph of f(x). This depends on the size of features that are relevant in the graph of
f(x).

We describe the envelope of f(x) using two functions: The upper envelope, u(x) and the lower
envelope v(x) The graph of the upper envelope function should remain as much as possible above the
graph of the given function f(x), whereas the graph of the lower envelope should remain below it;
how rigidly these conditions are enforced needs to be user selectable so that large spikes that may be
due to noise can be ignored if necessary. In addition, the graphs of u(x) and v(x) should follow the
oscillations in the graph of f(x) by staying close to it. Once again, how closely u and v should follow
f must also be user tunable.

3

Our model for finding the upper envelope u consists in solving the following optimization problem:

min
u

∫
|∇u|2 + λu + µ

(
(f − u)+

)2

dx

The two constants λ and µ are to be chosen positive, with µ typically much larger than λ. In this
energy, the first term penalizes large gradients and rapid oscillations in u, so that the envelope function
turns out to be a simpler representation of the signal, with all its tiny oscillations suppressed if desired.
The second term in the energy encourages u to be as small as possible; this is the term that attracts
the graph of u towards that of f . The larger the parameter λ, the closer the graph of u follows that of
f , leading to a more detailed envelope (i.e. one that captures finer scale features). The third term is
acts as a barrier, turning on only at points where u falls below f , and counteracting to keep the graph
of u above that of f .

The Euler-Lagrange equations for this model lead to the following gradient descent PDE:

ut = 2∆u− λ + 2µ(f − u)+H(f − u)

where H(ξ) : R → R denotes the Heaviside function, i.e. H(ξ) = 1 if ξ > 0 and H(ξ) = 0 otherwise.
The following semi-implicit time discretization is used to solve this PDE:

un+1 − un

δt
= 2∆un+1 − λ + 2µ(f − un)+H(f − un)

where δt is the time step size and un denotes the solution at time t = nδt. This equation can now be
discretized also in space and the resulting linear system solved at every time step using once again the
discrete Fourier transform, in much the same way that was explained in the description of the routine
tik_f.m.

To find the lower envelope v, we propose solving the following optimization problem:

min
v

∫
|∇v|2 − λv + µ

(
(f − v)−

)2

dx

the gradient descent for which gives:

vt = 2∆v + λ− 2µ(f − v)−H(f − v)

Its interpretation and numerical treatment is completely analogous to the ones for the upper envelope
u described above.

[u,E] = match(nt,dt,uin,f,g,fid)

This routine implements a variational model for warping a one dimensional function f onto another
g. The two signals are assumed to be defined on the unit interval [0, 1]. Then, the mapping sought
is a deformation of [0, 1] into itself, i.e. a map u : [0, 1] → [0, 1]. Using this deformation, new images
are generated from f by the composition f(u(x)); these are warped versions of f . The model looks for
the map u : [0, 1] → [0, 1] that best matches f(u(x)) to the other given signal g(x) by minimizing the
following cost function: ∫ 1

0

|∇u|2 + λ
(
f(u(x))− g(x)

)2

dx.

The first term in the energy imposes a smoothness penalty on the deformation function u so that the
mapping is not too unruly (and in particular, takes nearby points to nearby points). The relative
importance of this term with respect to the “fitting” term can be tuned via the parameter λ.

The Euler-Lagrange equations that minimizers of the deformation model satisfies leads to the
following gradient descent PDE that can be used to seek them out:

ut = ∆u− λ
(
f(u)− g

)
f ′(u).

The time discretization used in the numerical solution of this PDE is:

un+1 − un

δt
= ∆un+1 − λ

(
f(un)− g

)
f ′(un)

4

where un denotes the approximate solution at time t = nδt. As with the previous models, the resulting
linear system at every time step can be efficiently solved via the discrete Fourier transform. An
important numerical point is that the evaluations f(un) and f ′(un) require interpolation (since the
functions f and f ′ are defined on the grid, but u(x) need not correspond to a grid point). Linear
interpolation, provided by the routine fint1d.m was used for this purpose.

Physical and Engineering Principles

Our metrics and measures were constructed not so much as any sort of final answer (in their raw
form), but rather to provide representations of the differences between signals which would be useful
for building a good metric. In particular, we believe that the output of our measure and distance
functions will provide good coordinates in which to build custom, weighted metrics. Having components
or coordinates capturing the right differences and features is important, even if we do not believe any
one of the coordinates will do the trick.

Our approach was inspired by listening to the subject area experts discuss how they judged closeness
of simulated and experimental data. What emerged from those discussions was that the features such
as peak amplitudes, when those peak amplitudes occurred, decay envelopes, and vertical shifts of those
envelopes were all used in the evaluation of how well two signals matched or did not match. Additional
features included energy content and decay, and frequency content.

Envelopes and Tikhonov regularized versions of the signals, each computed at a small set of scales,
were chosen because they seem to encapsulate a good fraction of what was being used to make expert
comparisons. In particular, they use or measure:

(1) decay

(2) max peak height

(3) max peak location

(4) energy

(5) frequency content

A metric constructed using the multiscale measure/distance vector we compute should therefore be
able to “see” these important features.

1.1 Usage

In this subsection we give, for each function and driving routine, a brief synopsis of usage and things
to know about parameter choices, instabilities to avoid, etc. The synopsis of each is taken from the
documented .m files.

The functions:

1. test1116.m is a driving program generating the metric/distance metrics form a collection of
experiment/simulation pairs.

2. metrics_SE_KRV.m is the program that generates the metric/distance vectors given a single pair
of signals. The choice of the tuning parameters were arrived at empirically. For a discussion of
choices for λ, µ, dt, and nsteps see the usage notes for env_ev and Tik_f.

3. warp_dist.m is a function which computes the warping distance between to input signals

4. env_symdif.m is a simple function which computes the area of the symmetric difference between
two input envelopes. This is then divided by the sum of the areas of the two envelopes, yielding
a dimensionless number between 0 and 1. The use of this function is completely straightforward.

5. env_meas.m is a function with computes 9 simple measures from a single envelope. The use of
this function is completely straightforward.

5

6. fint1d.m is a function which computes interpolations

7. match.m is a function which finds the optimal warp of one function into another. Since this is
not symmetric in the input functions, warp_dist.m calls this function twice to symmetrize the
resulting warping distance.

8. env_ev.m computes the envelope of an input signal. There are tuning or scale parameters con-
trolling how smooth and how strict the envelope is.

9. tik_f.m computes the Tikhonov regularization of an input signal, The tuning or scale parameter
controls how smooth vs. how faithful the output is.

10. expert_metric_comp.m is a currently untested function which compares any of the distances
we compute to an expert supplied scoring (in the form of a distance). We include this function
because it was carefully written (not too many bugs probably) and, more importantly because
we think that the idea it contains is valuable.

test1116.m

inputs:

fname = name of the mat file
including the .mat extension

Test = flag choosing tuning or testing (validation).
Set true causes it to be run on the
non-tuning data.

outputs:

M = a cell array of results for
the comparisons between experimental
and simulation metric output. Our
metric code does not have time of Arrival
code in it, so we assume the input is
properly truncated (or at least all have
the same truncation).
Each cell M{i,j}() is a 49xk matrix, each
column of which contains the differences
of measures between the experiment and simulation
or the various distances. To be precise, the
first 36 elements are differences of measures
-- simulation minus experiment -- the next
12 are distances, two sets of fractional
symmetric differences and one set of warping
distances.The number k is controlled by the
number of experiments and equals the number
of columns in Ce{i,j}().

M_label = 49 x 1 cell array of strings
containing more complete descriptions
what the measures or distances are.

notes:

1) the first 36 entries of each column vector

6

in M can be negative, the last 13 are always
positive

2) This is really just a calling program. There
is the test/tuning parameter that can be set.
In particular

tt_select = (some number in [0,1])

controls the relative size tuning/testing sets

metrics_SE_KRV.m

[labels,measures]=metrics_SE_KRV(ref)
[labels,measures]=Metrics_SE_KRV(ref,data)

synopsis: computes several measures and metrics on input
column vectors.

input:

ref = is a reference vector of doubles. For the Threaded
assembly data, it represents a time signal output
from a strain gauge or an accelerometer. It can
be any vector of values, but some of the measures
may not make sense out of context.

data = is a data vector of boubles for comparison with
ref. It need not be the same length as ref, but
the both the data and ref are assumed pre-truncated.

output:

labels = an N by 1 cell array of strings that identify
the corresponding measures or metrics (see below).

measures = an N by 3 vector of doubles. Each row corresponds
to either measures on the input data OR a single
metric distance between the two inputs.

parameters:

N = 49 = is the number of measures or metrics returned
T if T = 1, do Tikonov reg preprocessing. If T = 0 skip it.

If it is done, a scale of 5000000 seems to work well
for normalized signals and time in ticks.

L_gen = if = 1 then labels are generic otherwise customized
labels are output.

notes:

1) very briefly, we compute envelopes of both curves (if there are two)
or the single curve and then generate 9 measures on each envelope.
If there are two curves, then several distances between the curves

7

are computed using the envelopes of each curves computed at several
scales, envelopes of the spectrum (abs(fft(signal))) of each curve and
the warping distance is computed between Tikonov regularized versions
of the two curves.

2) The scales used (see tik_scale, l_scale, m_scale, t_step below) have
been arrived at empirically. some more thought might be inversted
here later, but for now this seems to cover a good range and work
well of the data with ticks for time and the frequency content that
we have seen in these simulations and experiments.

warp_dist.m

[d] = warp_dist(nt,dt,f,g,fid)

synopsis:

This function computes the warping distance between
the two input images f and g, by deforming the
underlying space. It does this by finding the optimal
deformation from f to g, and from g to f, by calling
the routine match.m twice.

input:

nt = Number of time steps to take in finding the
the optimal warping.

dt = Time step size in iteratively finding the
optimal warping.

f = Input image whose distance to g is to be found.
g = Input image whose distance to f is to be found.

fid = Strength of fidelity term in warping model.

output:

d = The warping distance. Although symmetric, it
probably is not a true "metric".

notes:

1) The input images f and g are assumed to be row
vectors of equal length.

2) There is no error check!

env_symdif.m

8

[symdiff] = env_symdif(e1,e2)

synopsis: computes a dimensionless measure of symmetric
difference between two input envelopes.

input:

e1,e2 = the two envelopes which are each assumed to be
a 2 by n matrix where the first row e(1,:) is
the upper envelope and the second row e(2,:) is
the lower envelope.

output:

symdiff = the area of the symmetric differece of the
envelopes divided by the sum of the areas of
the envelopes.

notes:

1) The input y values are assumed to be from points uniformly
spaced in x with a dx = 1. Simply multiply the answer
returned by the correct dx if it is not = 1.

2) if the two envelops are not of equal length, then one
is truncated

env_meas.m

[env_measures]= env_meas(e)

synopsis: compute several measures from an envelope

input:
e = 2 by n matrix, e(1,:) assumed the upper envelope

e(2,:) assumed to be the lower envelope

output:

env_measures = 9 dimensional row vector containing the
computed measures. They are, in order
of appearance in env_measures,

y_centroid = vertical centroid of envelope
max_vert = max (e(1,:)-e(2,:))
max_vert_x = argmax (e(1,:)-e(2,:))
vert_width = max(e(1,:)) - min(e(2,:))
x_max = argmax e(1,:)
x_min = argmin e(2,:)

9

y_max = max e(1,:)
y_min = min e(2,:)
area = area enclosed by envelope

notes:

1) The input y values are assumed to be from points
uniformly spaced in x with a dx = 1. Simply multiply
the answer returned by the correct dx if it is not = 1.

fint1d.m

[y] = fint1d(x,f)

synopsis:

This routine carries out linear interpolation in one dimension.
The input function f is assumed to be defined on a uniform
grid on the unit interval [0,1]; the first grid point is
assumed to be at 0, and the last one at 1. The input vector
x contains the coordinates of points at which f is to be
interpolated.

input:
x = Location of points where value of f(x) is desired.

Assumed to be a row vector, same size as f.
f = Values of the function at the the uniform grid points.

Assumed to be a row vector, same size as u.

output:
y = Interpolated values of f at the points in x.

Row vector of same length as x and f.

match.m

[u,E] = match(nt,dt,uin,f,g,fid)

synopsis:

Routine used for warping the one dimensional signal f
onto g by deforming the interval on which they are defined.

input:
nt = Number of time steps to take.
dt = Time step size.
uin = Initial guess for the deformation function.

10

f = Signal to be deformed onto g.
g = Signal onto which f is to be deformed.
fid = Fidelity constant appearing in the deformation model.

output:
u = Optimal deformation computed by the model.
E = Energy (i.e. cost) of the optimal deformation.

env_ev.m

[enu,enl] = env_ev(nsteps,dt,in_enu,in_enl,fin,lambda,mu)

synopsis: find an envelope of a 1-d signal or function
(env_ev = envelope evolver)

input:

nsteps = number of steps
dt = time step size

in_enu = initial upper envelope
in_enl = initial lower envelope

fin = function for which the envelope
is desired.

lambda = smoothing parameter (the balance
between the regularization and the
data fidelity part for curve "outside"
curve)

mu = smoothing parameter (the balance
between the regularization and the
data fidelity part for curve "inside"
curve)

output:

enu = upper envelope
enl = lower envelope

notes:

1) we assume data entered is a row vector
2) we don’t do any error checking
3) there are other versions that are curently

commented
out below

4) We found that for signals normalized to take values in [-1, 1],
time in ticks and the types of oscillations that seem typical
in the empirical signals the following choices for {dt,lambda,mu}
gave a reasonable range of envelopes: {0.001,5,3000},
{0.0001,50,30000}, {0.00001,500,300000}, {0.000001,5000,3000000}.
The time steps are selected in tandem with the scale selection because
the the code is only semi-implicit and too large of a time step will
cause an instability. The scale selects in effect how fast we evolve
and so smaller scales can be advenced with bigger time steps to get

11

comparable behavior.

tik_f.m

[tik] = tik_f(fin,lambda)

synopsis:

This routine calculates the Tikonov regularized version of the
one dimensional input signal fin.

input:

fin = The one dimensional signal to be regularized.
Assumed to be a row vector.

lambda = Regularization parameter. The smaller this parameter is,
the smoother the regularized signal.

output:

tik = Tikhonov regularized signal.
It’s a row vector of same size as the input fin.

notes:

1) we found that, given the threaded assembly signals in ticks,
the lambda values of 5000, 50000, 500000, 5000000 gave
a nice range of scales to generate Tikhonov regularizions
with.

expert_metric_comp.m

[rank,warp] = expert_metric_comp(M,expert,idx)

synopsis:

compare an expert rating of the comparisons
with one of the distance (or with minor
modifcations combinations of the same).
The results are reported with two scalars:
rank and warp.

inputs:

M = a cell array of results for
the comparisons between experimental
and simulation metric output.

12

Each cell M{i,j}() is assumed to be a
49 x k matrix, each column of which contains
the differences of measures
between the experiment and simulation or
the various distances. To be precise, the
first 36 elements are differences of measures
-- simulation minus experiment -- the next
12 are distances, two sets of fractional
symmetric differences and one set of warping
distances. The number k is controlled by the
number of experiments and equals the number
of columns in Ce{i,j}().

expert = the expert rankings. It is assumed a 31 x 3
cell array whose {i,j} element is
a 1 by size(Ce{i,j},2) row vector
containing the rankings on a 0-10
scale: 10 = horrible, terrible,
deplorable, unspeakable, atrocious
and 0 is perfect, heavenly, exquisite,
amazing, (and too good to be true).

!!! Note: that the expert ratings are reversed!!!
from the usual high=good low=bad
system.

idx = a selection cell matrix with 1’s where the
{i,j} cell is to be used in the comparison
and 0’s everywhere else. In test1116 it is
generated with rand (see test1116 for details)

outputs:

rank = a number >= 1 which measures the quality of the
match between expert and metric (the metric is
selected by Dist below). In particular this
measures how well the ranking matches between
the two.

warp = a measure of how good the match is after the
ranking comparisons has been done.

notes:

1) If handed a cell array with expert ranking
-- say a 31x3 cell array whose {i,j}th cell
is a 1 by size(Ce{i,j},2) row vector it is
a simple matter to use M to get a comparison

2) Dist chooses which of the 49 measures or
distances to try when comparing with the
expert scoring.

13

details of rank computation:

If an expert rating has been supplied, compute the comparison
between the metric selected by Dist (in user parameters).
We use the following method:

1) sort expert ratings
2) use the mapping from the export sort to map

the metric values.
3) compute the TV of the thus, quasi-sorted metric

values. Divide this by the TV of the fully
sorted metric values (this is just the max - min)

4) report this value as Rank1

now switch the roles of expert and metric ratings and do 1-4
again to get Rank2 ... this is steps 5-8

9) report rank = (Rank1 + rank2)/2 as the comparison
metric between the expert and metric generated
ratings.

the closer to one this is, the better. A value of 1 tells
that experts and metric agree insofar as RANKINGS go. There
can still be significant differences! (Therefore, the warping
below ...)

details of warp computation:

Now we measure the difference between the expert and metric ratings
that cannot be measured by rankings:

Example: [1, 1.1, 1.2, 1.3, 1.4, 10] = [1, 9.1, 9.2, 9.3, 9.4, 10]
insofar as ranking is concerned.

To do this we warp and use the warp energy as a second component
of the difference between expert and metric

What is left is the possibility that the top and bottom ranges
do not match. We assume they do and begin by mapping the ranges
to each other so that, remaped, max(s_rM) = max(s_rE) and
min(s_rM) = max(s_rE).

14

